# 54. Metabolic Products of Microorganisms

Part 269<sup>1</sup>)

# 5-Phenylpentadienoic-Acid Derivatives from Streptomyces sp.

by Olivier Potterat and Hans Zähner\*

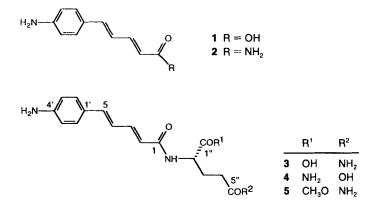
Biologisches Institut, LB Mikrobiologie/Antibiotika, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen

#### and Jörg W. Metzger and Stefan Freund

Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen

### (10.IX.93)

Two new phenylpentadienamides isolated from the culture filtrate of *Streptomyces* sp. were assigned the structures 5-(4-aminophenyl)penta-2,4-dienamide (2) and  $N^2$ -[5-(4-aminophenyl)penta-2,4-dienoyl]-L-glutamine (3). In addition, 5-(4-aminophenyl)penta-2,4-dienoic acid (1) has been isolated, and its spectroscopic characteristics are reported for the first time. Compounds 1-3 exist in both the (2*E*,4*E*)- and (2*E*,4*Z*)-configurations. Electrospray and tandem MS, and HPLC/MS proved to be particularly suitable for the characterization of these metabolites.


**Introduction.** – As part of our chemical screening program, we observed that *Streptomyces* sp. Tü 3946 excreted into the culture broth a series of light yellow metabolites. These compounds appeared as orange spots, when TLC plates were sprayed with *Ehrlich* reagent [2]. Here, we report on the isolation and structure elucidation of three of these metabolites. Electrospray MS, which was introduced as a highly sensitive and soft ionization technique for the mass-spectrometric analysis of polar, non-volatile, and thermolabile molecules [3], was used for the characterization of these substances and is described in detail.

**Results.** – The metabolites were separated from the culture filtrate of *Streptomyces* sp. Tü 3946 by adsorption on *Amberlite XAD 16*. Subsequent fractionation by a combination of gel filtration on *Sephadex LH-20* and reversed-phase chromatography on *C-18* provided compounds **1–3** in pure form (see *Exper. Part*).

HPLC coupled with electrospray MS and diode-array detection revealed that 1–3 were a mixture of two isomers each. Both isomers showed identical fragmentation patterns but differed in their UV-absorption maxima by *ca*. 10 nm (*e.g.*  $\lambda_{max} = 305$  and 294 nm for 1). Both isomers were preparatively separated by HPLC. However, on evaporation of the solvent (temperature < 40°), mixtures once again resulted from each one. The isomeric mixtures 1–3 were, therefore, used for the structure elucidation.

Coumpound 1 (mol. wt. 189) was assigned the molecular formula  $C_{11}H_{11}NO_2$  by HR-EI-MS. The NMR data (see *Tables 1* and 2) revealed a penta-2,4-dienoic-acid moiety bonded to a *p*-substituted Ph ring. 1D-COSY [4],

<sup>&</sup>lt;sup>1</sup>) Part 268: [1].



HMQC [5], and HMBC [6] experiments allowed complete assignment of <sup>1</sup>H- and <sup>13</sup>C-NMR signals. Both isomers were shown to differ only in the configuration at the C(4)=C(5) bond. The coupling constant J(4,5) was found to be either 15.4 Hz ((*E*)-configuration) or 11.7 Hz ((*Z*)-configuration;  $\delta$ (H–C(5)) 6.83 and 6.67 ppm, respectively). On the other hand, J(2,3) (15.1 Hz) was identical in both isomers ( $\delta$ (H–C(2)) 5.85 and 5.93 ppm, respectively). Corresponding attribution of H–C(2) and H–C(5) was confirmed by a heteronuclear long-range coupling between H–C(2) and C(1) detected in the HMBC spectrum. Thus, compound **1** constitutes a mixture of (2*E*,4*E*)- and (2*E*,4*E*)-isomers of 5-(4-aminophenyl)penta-2,4-dienoic acid. The NMR and EI-MS data are in very good agreement with those reported for (2*E*,4*E*)-5-(4-hydroxyphenyl)penta-2,4-dienoic acid (avenalumic acid) [7].

The molecular formula of compound 2 (mol. wt. 188) was established as  $C_{11}H_{12}N_2O$  by HR-EI-MS. The <sup>1</sup>Hand <sup>13</sup>C-NMR data (see *Tables 1* and 2) were very similar to those of 1. The structure was established to be 5-(4-aminophenyl)penta-2,4-dienamide. As in 1, the C(4)=C(5) bond exists in either the (Z)- or (E)-configuration.

| H-Atom     | 1              |                     | 2              |                           | 3              |                           |
|------------|----------------|---------------------|----------------|---------------------------|----------------|---------------------------|
|            | $(2E, 4E)^{a}$ | (2E,4Z)             | (2E,4E)        | (2 <i>E</i> ,4 <i>Z</i> ) | (2E,4E)        | (2 <i>E</i> ,4 <i>Z</i> ) |
| H-C(2)     | 5.85           | 5.93                | 6.00           | 6.09                      | 6.07           | 6.16                      |
| - /        | (d, J = 15.1)  | (d, J = 15.1)       | (d, J = 15.1)  | (d, J = 15.0)             | (d, J = 15.0)  | (d, J = 15.0)             |
| H-C(3)     | 7.40           | 7.84                | 7.29           | 7.77                      | 7.26           | 7.75                      |
|            | (dd, J = 15.1, | (dd, J = 15.1,      | (dd, J = 15.1, | (dd, J = 15.0,            | (dd, J = 15.0, | (dd, J = 15.0,            |
|            | 10.5)          | 12.1)               | 10.5)          | 11.8)                     | 9.7)           | 11.8)                     |
| H-C(4)     | 6.74           | 6.19                | 6.71           | 6.16                      | 6.68           | 6.14                      |
|            | (dd, J = 15.4, | (pseudo-t,          | (dd, J = 15.5, | (pseudo-t,                | (dd, J = 15.1, | (pseudo-t,                |
|            | 10.5)          | J = 11.6)           | 10.5)          | J = 11.8)                 | 9.7)           | J = 11.5)                 |
| H-C(5)     | 6.83           | 6.67 <sup>b</sup> ) | 6.79           | 6.62                      | 6.74           | 6.57                      |
|            | (d, J = 15.4)  | (d, J = 11.7)       | (d, J = 15.5)  | (d, J = I1.8)             | (d, J = 15.1)  | (d, J = 11.3)             |
| H-C(2'/6') | 7.27           | 7.13                | 7.25           | 7.15                      | 7.22           | 7.13                      |
|            | (d, J = 8.4)   | (d, J = 8.4)        | (d, J = 8.3)   | (d, J = 8.5)              | (d, J = 8.5)   | (d, J = 8.5)              |
| H-C(3'/5') | 6.65           | 6.69                | 6.64           | 6.68                      | 6.64           | 6.67                      |
|            | (d, J = 8.4)   | (d, J = 8.4)        | (d, J = 8.3)   | (d, J = 8.5)              | (d, J = 8.5)   | (d, J = 8.5)              |
| H-C(2")    |                |                     |                |                           | 4.38 (m)       | 4.38 (m)                  |
| H-C(3")    |                |                     |                |                           | 1.95-2.05(m);  | 1.95-2.05 (m);            |
|            |                |                     |                |                           | 2.15 - 2.25(m) | 2.15 - 2.25(m)            |
| H-C(4")    |                |                     |                |                           | 2.4-2.25(m)    | 2.4-2.25(m)               |

| Table 1. <sup>4</sup> | H-NMR Data ( | $CD_1OD_1$ | 400.1 MHz) | of Con | npounds 1–3 |
|-----------------------|--------------|------------|------------|--------|-------------|
|                       |              |            |            |        |             |

<sup>a)</sup> Configuration of the pentadiencyl molety. <sup>b)</sup> Obscured; signal observed in a 1D-COSY experiment [4] by selective irradiation of H-C(4) via a 100-ms Eburp-shaped pulse.

| C-Atom   | 1               |          | 2       |          | 3                    |                           |
|----------|-----------------|----------|---------|----------|----------------------|---------------------------|
|          | $(2E, 4E)^{a})$ | (2E, 4Z) | (2E,4E) | (2E, 4Z) | (2E, 4E)             | (2 <i>E</i> ,4 <i>Z</i> ) |
| C(1)     | 171.3           | 171.2    | 171.8   | 171.6    | 168.6                | 168.4                     |
| C(2)     | 119.4           | 122.9    | 121.5   | 124.8    | 122.5                | 125.7 <sup>b</sup> )      |
| C(3)     | 147.8           | 143.0    | 144.2   | 139.7    | 142.9                | 138.5                     |
| C(4)     | 122.8           | 124.6    | 123.0   | 124.8    | 123.2                | 125.0 <sup>b</sup> )      |
| C(5)     | 142.9           | 139.6    | 141.9   | 138.7    | 141.2                | 138.0                     |
| C(1')    | 126.9           | 127.3    | 127.2   | 127.5    | 127.2                | 127.6                     |
| C(2'/6') | 129.9           | 131.8    | 129.6   | 131.8    | 129.5                | 131.7                     |
| C(3'/5') | 116.0           | 115.9    | 116.0   | 115.9    | 116.0                | 115.8                     |
| C(4′)    | 150.8           | 149.8    | 150.5   | 149.6    | 150.2                | 149.3                     |
| C(1")    |                 |          |         |          | 178.4 <sup>c</sup> ) | 178.4°)                   |
| C(2")    |                 |          |         |          | 55.8                 | 55.8                      |
| C(3")    |                 |          |         |          | 30.2                 | 30.2                      |
| C(4″)    |                 |          |         |          | 33.1                 | 33.1                      |
| C(5")    |                 |          |         |          | 178.4 <sup>c</sup> ) | 178.4°)                   |

Table 2. <sup>13</sup>C-NMR Data (CD<sub>3</sub>OD, 100.6 MHz) of Compounds 1-3. Assignments based on HMQC spectra.

<sup>a</sup>) Configuration of the pentadiencyl moiety. <sup>b</sup>) Values interchangeable although these attributions are preferred. <sup>c</sup>) Broad signal, unresolved.

The UV data of 3 suggested that, as 1 and 2, a phenylpentadienoyl moiety was present. Acidic hydrolysis of 3 (6N HCl) and amino-acid analysis by GLC on a chiral phase [8] revealed the presence of L-glutamic acid. The electrospray-MS of 3 showed pseudomolecular ions at m/z 318 ( $[M + H]^+$ ) and 635 ( $[2M + H]^+$ ). In addition, an intense fragment ion was observed at m/z 172 which was attributed to the acylium ion corresponding to the phenylpentadienoyl moiety of the molecule. The cleavage of the amide bond also occurred by collision-induced dissociation (CID) of the  $[M + H]^+$  ion with Ar (see Fig.). The reaction of 3 with CH<sub>2</sub>N<sub>2</sub> resulted mainly in a monomethylated product 5, as indicated by an increase of the mol. wt. of 14 u, which demonstrated the presence of an acidic group in the molecule. CID of the  $[M + H]^+$  ion of this product proved that the acyl part remained unchanged, since the fragment ion at m/z 172 was still the dominant ion in the daughter-ion mass spectrum. All data obtained so far were in agreement with a (4-aminophenyl)pentadienoyl derivative of an amide of glutamic acid. To localize the amide function, compounds 3 and 4 were prepared by condensation of 1 with glutamine or isoglutamine (4,5-diamino-5-oxopentanoic acid), respectively. Both synthetic compounds had a mol. wt. of 317



Figure. Daughter-ion mass spectrum of 3 (CID of  $[M + H]^+$ , m/z 318)

determined by electrospray MS and afforded a dominant fragment ion at m/z 172 in the daughter ions MS of the  $[M + H]^+$  peak. While synthetic 3 proved to be identical with the natural compound, 4 clearly differed from the latter on TLC and HPLC analyses. Thus, compound 3 is  $N^2$ -[5-(4-aminophenyl)penta-2,4-dienoyl]-L-glutamine. The C(4)=C(5) bond exists in either the (*E*)- or (*Z*)-configuration.

**Discussion.** – Compounds 1–3 were not detected in the mycelium. It is not clear, whether (2E, 4E)- and (2E, 4Z)-isomers were both synthesized by the microbial strain, or if isomerization occurred during the fermentation and isolation procedure. Interestingly, avenalumic acid undergoes isomerization on exposure to daylight [7]. The amides 2 and 3 have so far not been described in the literature. The chemical synthesis of 1 has been reported already in the beginning of this century [9], but no spectroscopic data have been available up to now. Compound 1 has been obtained for the first time from a biological source. 5-Phenylpenta-2,4-dienoic-acid derivatives are rather unusual natural products. 5-Phenylpenta-2,4-dienoic acid itself has been detected in the bud exudate of *Populus* species [10] [11]. Some *p*-hydroxy derivatives have also been found in plants: psilotic acid has been isolated from *Psilotum nudum* [12], while several avenalumic acid conjugates were obtained from oat groats and hulls [7]. On the other hand, there is no report about the production of phenyl-pentadienoic-acid derivatives by microorganisms. Compounds 1–3 proved to be inactive against Gram-positive and Gram-negative bacteria in our testing systems.

This work was supported by the *Deutsche Forschungsgemeinschaft* (SFB 323). We are grateful to Dr. H.P. Fiedler, Mrs. J. Wachter (HPLC-UV), and Mr. G. Nicholson (GLC) for analytical measurements. O.P. wish to thank the Swiss National Science Foundation and the Société Académique Vaudoise for the awarding of a postdoctoral fellowship.

#### **Experimental Part**

General. H-L-Gin-O'Bu·HCl and H-L-Glu(O'Bu)-NH<sub>2</sub>·HCl were purchased from *Bachem Biochemica*. Prep. low-pressure liquid chromatography (LPLC): Lobar C-18 column (40–63 µm; i.d. 2.5 × 27 cm; Merck) equipped with a FR-30 HPLC pump (Knauer). Prep. HPLC: Nucleosil 100 C-18 column (10 µm, i.d. 250 × 16 mm) equipped with a precolumn (i.d. 30 × 16 mm), 2 Sepapress HPP 200/100 high-performance pumps (Kronwald) and a Sepacon GCU-311 gradient control unit (Kronwald). TLC: silica-gel-precoated Al sheet (Macherey-Nagel), BuOH/EtOH/ H<sub>2</sub>O 6:2:2 (eluent 1). GLC: GC-Sichromat 1 (Siemens) equipped with a N-selective detector and an Autoderivat 100 derivatization system (CAT, Tübingen, Germany). M.p.: given for the mixture of stereoisomers and are uncorrected. [ $\alpha$ ]<sub>D</sub>: Perkin-Elmer 241 polarimeter; 0.1-dm cell. IR: Perkin-Elmer 281 B infrared spectrophotometer. NMR: High-resolution spectra were obtained on a Bruker AMX 400 spectrometer interfaced to a X32 computer and equipped with an inverse triple resonance probe; 50 mm soln. in CD<sub>3</sub>OD were used; chemical shifts were referenced to the solvent peak ( $\delta$ (H) 3.30 ppm;  $\delta$ (C) 49.0 ppm); assignments by the use of 1D-COSY [4], heteronuclear multiple quantum coherence (HMQC) [5] and heteronuclear multiple bond correlation (HMBC) [6] experiments.

*Microbial Strain. Streptomyces* sp. Tü 3946 was isolated from a soil sample collected in 1990 in New Zealand. The strain builds a gray spore mass on yeast extract agar. The spore surface is spiny. Melanin is not produced on peptone/yeast extract/iron agar.

*Production and Isolation.* The strain Tü 3946 was cultivated in 500-ml *Erlenmeyer* flasks with four baffles containing each 150 ml of a medium consisting of decreased soybean meal (2%), starch (1%), glycerol (1%), and NaBr (0.03%; pH 7.75). Each flask was inoculated with 5 ml of a 36-h old preculture (medium: soybean meal (2%), mannitol (2%), pH 7.5). The fermentation was carried out on a rotary shaker for 4 d at 27°. After filtration of the culture broth (5 l), the culture filtrate was passed through a *Amberlite XAD 16* column (500 ml), and the

compounds were then eluted with MeOH (2 1). After evaporation, a 8.6-g portion of the residue (9.1 g) was fractionated on a *Sephadex LH-20* column (i.d.  $61 \times 5$  cm) with MeOH/H<sub>2</sub>O 1:1. Fourteen fractions were collected (I–XIV). Compound 1 was purified from *Fraction VII* (74 mg) by LPLC on *RP-18* with MeOH/H<sub>2</sub>O 4:6; compounds 2 and 3 were obtained following the same procedure from *Fractions XIII* (82 mg) and *V* (930 mg), resp., with MeOH/H<sub>2</sub>O 2:8 and 3:7, resp. Final purification of compounds 1 (3 mg), 2 (12 mg), and 3 (117 mg) was achieved by prep. HPLC on *RP-18* with following eluents (flow rate 20 ml/min): *I*. MeOH/0.05% aq. TFA 1:9→1:0 in 30 min; *2*. MeCN/H<sub>2</sub>O 0:1→7:3 in 10 min; *3*. MeOH/H<sub>2</sub>O 1:9→1:1 in 15 min.

Mass Spectrometry. EI-MS: TSQ 70 spectrometer (Finnigan MAT). HR-EI-MS: Modified MAT 711A spectrometer (AMD INTECTRA). Electrospray MS and tandem MS: Measurements were performed on a Sciex API III triple-quadrupole mass spectrometer with mass range of 2400 Da equipped with a nebulizer-assisted electrospray ('ion spray') ion source (Sciex, Thornhill, Ontario, Canada). The mass spectrometer was operated in positive-ion mode under conditions of unit mass resolution for all determinations. The accuracy of mass determination was  $\pm$  0.1 u. Profile spectra were obtained by acquiring data points every 0.1 Da. Electrospray voltage was +4.9 kV, orifice voltage was +80 V. Collision-induced dissociation experiments (CID, daughter-ion scans) were performed using Ar at a target gas thickness of ca.  $5 \times 10^{14}$  atoms cm<sup>-2</sup> with collision energies of ca. 40 eV. Daughter ions were obtained by electrospray MS and tandem MS (MS/MS) either directly or on-line in combination with a narrow-bore HPLC-system (Applied Biosystem 140A). For direct injection, the soln. was introduced into the electrospray source at a constant flow rate of  $5 \mu$ /min with a metical syringe infusion pump (Harvard Apparatus, modell 22, Southnatick, USA) in combination with a microliter syringe (100  $\mu$ l, Hamilton, # 1710, USA).

*HPLC/MS*. Analyses were performed on a *Nucleosil C-18* narrow-bore column (5  $\mu$ m; 100 × 2 mm) equipped with a precolumn (10 × 2 mm). The column was connected with the electrospray interface *via* a fused capillary (length 30 cm; 100  $\mu$ m i.d.). A gradient of aq. MeCN, containing TFA (0.1%), was used as eluent (MeCN/H<sub>2</sub>O 0:1 $\rightarrow$ 1:1 in 10 min, flow-rate 200  $\mu$ l/min; 40  $\mu$ l/min into MS); detection by electrospray MS.

*HPLC/UV. HP 1090M* Liquid chromatograph equipped with a diode array detection system and a work station (*Hewlett-Packard*). Analyses were performed on a *Nucleosil C-18* column (5  $\mu$ m; i.d. 125 × 4.6 mm) equipped with a precolumn (i.d. 20 × 4.6 mm). A gradient of aq. MeCN was used as eluent (MeCN/0.1% aq. H<sub>3</sub>PO<sub>4</sub> 0:1 $\rightarrow$ 1:1 in 10 min, flow-rate 2 ml/min).

Amino-Acid Analysis. Compound 3 (0.1 mg) was dissolved in 6N HCl and hydrolyzed for 18 h at 110°. Derivatization was performed directly before the analysis by successive treatment with 3N HCl/PrOH (110°, 30 min) and (CF<sub>3</sub>CO)<sub>2</sub>O/CF<sub>3</sub>COOEt (140°, 10 min). After evaporation of the reagents, the sample was dissolved in toluene/Me<sub>2</sub>CO 3:1 and analyzed by GLC on a *Chirasil-Val* glass capillary column (20 m  $\times$  0.3 mm) [8]; the oven temp. programme was 80° for 3 min, then 80° to 190° at 4° min<sup>-1</sup>. L-Glutamic acid was identified by comparison with a standard.

5-(4-Aminophenyl)penta-2,4-dienoic acid (1,  $C_{11}H_{11}NO_2$ ). Orange-to-brown solid. M.p. 178°. TLC (SiO<sub>2</sub>, eluent 1):  $R_f$  0.56. IR (KBr): 3360, 3200, 1675, 1590, 1510, 1295, 1265, 995. HPLC/UV ((2*E*,4*E*)-isomer; r.t., 4.5 min): 305, 230. HPLC/UV ((2*E*,4*Z*)-isomer; r.t., 4.9 min): 294, 224. Electrospray-MS: 190 ([*M* + H]<sup>+</sup>). EI-MS (70 eV): 189 (19), 144 (100), 127 (18), 155 (11). HR-EI-MS ([*M*]<sup>+</sup>): calc. 189.0800, found 189.0795.

5-(4-Aminophenyl)penta-2,4-dienamide (2,  $C_{11}H_{12}N_2O$ ). Yellow solid. M.p. 205°. TLC (SiO<sub>2</sub>, eluent 1):  $R_f$  0.63. IR (KBr): 3320, 3200, 1650, 1580, 1510, 1385, 1290, 990. HPLC/UV ((2*E*,4*E*)-isomer; r.t., 3.4 min): 303, 228. HPLC/UV ((2*E*,4*Z*)-isomer; r.t. 3,7 min): 292, 224. Electrospray-MS: 189 ([M + H]<sup>+</sup>). EI-MS (70 eV): 188 (5), 144 (100), 143 (60), 127 (30), 115 (24). HR-EI-MS ([M]<sup>+</sup>): calc. 188.0949, found 188.0944.

 $N^2$ -[5-(4-Aminophenyl)penta-2,4-dienoyl]-L-glutamine (3, C<sub>16</sub>H<sub>19</sub>N<sub>3</sub>O<sub>4</sub>). Yellow-to-orange solid. M.p. 250° (dec.). [ $\alpha$ ]<sub>D</sub><sup>30</sup> = -4.9 (c = 0.205, DMSO). TLC (SiO<sub>3</sub>, eluent 1):  $R_f$  0.36. IR (KBr): 3350, 1650, 1585, 1505, 1395, 1285, 995. HPLC/UV ((2*E*,4*E*)-isomer; r.t., 3.5 min): 306, 230. HPLC/UV ((2*E*,4*Z*)-isomer; r.t., 3.7 min): 295, 225. Electrospray-MS: 318 ([M + H]<sup>+</sup>). Tandem-MS (electrospray-MS, CID of [M + H]<sup>+</sup>): 318, 172.

N<sup>2</sup>-[5-(4-Aminophenyl)penta-2,4-dienoyl]-L-glutamine Methyl Ester (5, C<sub>17</sub>H<sub>21</sub>N<sub>3</sub>O<sub>4</sub>). A soln. (1 ml) of CH<sub>2</sub>N<sub>2</sub> in Et<sub>2</sub>O was added to a soln. of 3 (17 mg) in BuOH/MeOH 2:1 (1.5 ml). After stirring for 15 h at r.t., the solvent was evaporated and the crude product purified by gel filtration on Sephadex LH-20 with MeOH/H<sub>2</sub>O 1:1. Final purification by HPLC on *RP-18* with MeCN/H<sub>2</sub>O (2:8→8:2 in 30 min) provided 3 mg of 4. Yellow solid. <sup>1</sup>H-NMR (CD<sub>3</sub>OD, (2*E*,4*E*)-isomer): 7.30 (*dd*, J = 15.0, 10.4, H–C(3)); 7.25 (*d*, J = 8.6, H–C(2'), H–C(6')); 6.80 (*d*, J = 15.5, H–C(5)); 6.72 (*dd*, J = 15.5, 10.4, H–C(4)); 6.65 (*d*, J = 8.4, H–C(3'), H–C(5')); 6.05 (*d*, J = 15.0, 10.4, H–C(3')). Electrospray-MS: 332 ([M + H]<sup>+</sup>). Tandem-MS (electrospray-MS, CID of [M + H]<sup>+</sup>): 332, 172.

#### HELVETICA CHIMICA ACTA - Vol. 77 (1994)

*Preparation of* **3** *and* **4** *from* **1**. *Compound* **3**. *N*,*N*'-diisopropylcarbodiimid (8.3 µl, 53 µmol), 1-hydroxy-1*H*-benzotriazol (7.2 mg, 53 µmol), Et(i-Pr)<sub>2</sub>N (18 µl, 105 µmol), and 4-(dimethylamino)pyridin (0.7 mg, 5.7 µmol) were dissolved in 1 ml of DMF. This soln. (0.1 ml) was added to a soln. of **1** (1 mg, 5.3 µmol) and H-t-Gin-O(*t*-Bu)·HCl (1.4 mg, 5.8 µmol) in DMF (0.1 ml). The mixture was kept at 60° for 15 h. After evaporation of the solvent, the dry residue was treated with 0.4 ml of TFA for 30 min. Purification by HPLC on *RP-18* with MeCN/0.1% aq. TFA (0:1→2:8 in 10 min) provided 0.6 mg of **3** identical (DC, HPLC, HPLC/MS and tandem-MS) with the natural compound. *Compound* **4**. N<sup>2</sup>-[*5*-(*4*-*Aminophenyl*)*penta-2.4-dienoyl*]-1-*isoglutamine* (**4**) was prepared from **1** (1 mg) and H-t-Giu(O(*t*-Bu))-NH<sub>2</sub>·HCl (1.4 mg) following the same procedure. Purification as described for **3** provided 0.8 mg of **4**. TLC (SiO<sub>2</sub>, eluent *1*): *R*<sub>f</sub> 0.47. Electrospray-MS: 318 ([*M* + H]<sup>+</sup>). Tandem-MS (electrospray-MS, CID of [*M* + H]<sup>+</sup>): 318,172.

## REFERENCES

- M. Ritzau, S. Philips, A. Zeeck, H. Hoff, H. Zähner, 'Obscurolides, a novel class of phosphodiesterase inhibitors from *Streptomyces*. II. Minor components belonging to the obscurolide B to D series', *J. Antibiot.* 1993, 46, 1625.
- [2] E. Stahl, 'Dünnschicht-Chromatographie', 2nd edn., Springer-Verlag, Berlin-Heidelberg-New York, 1967, p. 825.
- [3] A. P. Bruins, T. R. Covey, J. D. Henion, Anal. Chem. 1987, 59, 2642.
- [4] H. Kessler, H. Oschkinat, C. Griesinger, W. Bermel, J. Magn. Reson. 1986, 70, 106.
- [5] L. Müller, J. Am. Chem. Soc. 1979, 101, 4481.
- [6] A. Bax, M. F. Summers, J. Am. Chem. Soc. 1986, 108, 2093.
- [7] F. W. Collins, D. C. McLachlan, B. A. Blackwell, Cereal Chem. 1992, 68, 184.
- [8] H. Frank, G. Nicholson, E. Bayer, J. Chromatogr. Sci. 1977, 15, 174.
- [9] H. Fecht, Ber. Dtsch. Chem. Ges. 1907, 40, 3891.
- [10] W. Greenaway, F. R. Whatley, Phytochemistry 1990, 29, 2551.
- [11] W. Greenaway, S. English, F. R. Whatley, Z. Naturforsch., C 1990, 45, 931.
- [12] T. Shamsuddin, A. Khan, I. Ahmad, W. Rahman, K. M. Shamsuddin, Phytochemistry 1985, 24, 2458.